galaxy
  • Introduction
  • knowledge
    • JAVA
      • 多态
      • Socket
      • Servlet
      • HashMap
      • TCP
      • DelayQueue
      • Java反射
      • Java Proxy 和 CGLIB 动态代理
      • JVM
        • 类生命周期
        • JVM内存模型
        • 类加载器与双亲委派模型
        • JVM中堆和栈的区别
      • java.time
    • Spring
      • 常用注解
        • @Transactional
      • Spring Data JPA
      • AOP
      • IOC/DI
      • Spring 事务
      • Spring Boot 启动原理解析
      • Spring MVC
        • Spring MVC 2
      • MVC
    • 分布式
      • RPC框架
      • MQ
      • dubbo
        • 环境部署
        • demo
      • 分布式RPC框架性能大比拼
      • 序列化
      • ZK
        • 本地安装zk
        • ZK详解
      • 分布式
        • 分布式锁
      • 限流熔断技术
    • DB
      • Mysql
        • 索引
      • 事务
      • 数据库连接池
        • 工作原理
        • 连接池技术背景
        • 百度百科
        • 主流数据库连接池
      • MongoDB
        • 适用场景
        • MongoDB Java异步驱动快速指南
        • 异步Mongo驱动的性能测试
        • 使用规范
        • 使用场景2
      • Spring Data JPA
      • 数据库设计三大范式
      • 存储过程
      • 视图
      • 乐观锁与悲观锁
      • 分库分表
      • Redis3
        • 其它
        • Redis
        • 场景
        • 分布式及其它
    • Test
      • NGrinder
      • QPS与并发数
    • 并发编程
      • volatitle
      • 锁
      • ThreadLocal
      • AQS
      • CAS
      • RateLimiter
    • 线程池
      • Executors
      • ScheduledThreadPoolExecutor
      • 终止线程池原理
      • demo
  • MST目录
    • 算法&数据结构
      • 算法
      • 数据结构
      • 算法题
      • 经典算法
  • Tool
    • Git
    • Netty5
      • 一些案例
      • Netty源码分析
        • 一、服务器绑定过程分析
        • 二、线程模型分析
        • 三、Channel如何注册OP_ACCEPT, OP_READ, OP_WRITE
        • 四、事件分发模型
        • 五、ByteBuf缓冲区
        • 六、CodeC编解码分析
        • 七、异步执行Future和Promise
      • Netty5.0架构剖析和源码解读
    • idea
  • issue
    • Connection reset
    • 该如何从 Java 8 升级到 Java 10
    • 阿里巴巴为什么不用 ZooKeeper 做服务发现
  • Linux
    • command
Powered by GitBook
On this page

Was this helpful?

  1. knowledge
  2. DB
  3. MongoDB

适用场景

MongoDB已经流行了很长一段时间,相对于MySQL,究竟什么场景更需要用MongoDB?下面是一些总结。

更高的写入负载

默认情况下,MongoDB更侧重高数据写入性能,而非事务安全,MongoDB很适合业务系统中有大量“低价值”数据的场景。但是应当避免在高事务安全性的系统中使用MongoDB,除非能从架构设计上保证事务安全。

高可用性

MongoDB的复副集(Master-Slave)配置非常简洁方便,此外,MongoDB可以快速响应的处理单节点故障,自动、安全的完成故障转移。这些特性使得MongoDB能在一个相对不稳定(如云主机)的环境中,保持高可用性。

数据量很大或者未来会变得很大

依赖数据库(MySQL)自身的特性,完成数据的扩展是较困难的事,在MySQL中,当一个单达表到5-10GB时会出现明显的性能降级,此时需要通过数据的水平和垂直拆分、库的拆分完成扩展,使用MySQL通常需要借助驱动层或代理层完成这类需求。而MongoDB内建了多种数据分片的特性,可以很好的适应大数据量的需求。

基于位置的数据查询

MongoDB支持二维空间索引,因此可以快速及精确的从指定位置获取数据。

表结构不明确,且数据在不断变大

在一些传统RDBMS中,增加一个字段会锁住整个数据库/表,或者在执行一个重负载的请求时会明显造成其它请求的性能降级。通常发生在数据表大于1G的时候(当大于1TB时更甚)。 因MongoDB是文档型数据库,为非结构货的文档增加一个新字段是很快速的操作,并且不会影响到已有数据。另外一个好处当业务数据发生变化时,是将不在需要由DBA修改表结构。

没有DBA支持

如果没有专职的DBA,并且准备不使用标准的关系型思想(结构化、连接等)来处理数据,那么MongoDB将会是你的首选。MongoDB对于对像数据的存储非常方便,类可以直接序列化成JSON存储到MongoDB中。 但是需要先了解一些最佳实践,避免当数据变大后,由于文档设计问题而造成的性能缺陷。

场景

1、用在应用服务器的日志记录,查找起来比文本灵活,导出也很方便。也是给应用练手,从外围系统开始使用MongoDB。

2、在一些第三方信息的获取或者抓取,因为MongoDB的schema-less,所有格式灵活,不用为了各种格式不一样的信息专门设计统一的格式,极大得减少开发的工作。

3、主要用来存储一些监控数据,No schema 对开发人员来说,真的很方便,增加字段不用改表结构,而且学习成本极低。

4、使用MongoDB做了O2O快递应用,·将送快递骑手、快递商家的信息(包含位置信息)存储在 MongoDB,然后通过 MongoDB 的地理位置查询,这样很方便的实现了查找附近的商家、骑手等功能

特性及优势

MongoDB 的应用已经渗透到各个领域,比如游戏、物流、电商、内容管理、社交、物联网、视频直播等,以下是几个实际的应用案例。

游戏场景

:使用 MongoDB 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新

物流场景

:使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更新,以 MongoDB 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。

社交场景

:使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能

物联网场景

:使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析

视频直播

:使用 MongoDB 存储用户信息、礼物信息等

PreviousMongoDBNextMongoDB Java异步驱动快速指南

Last updated 6 years ago

Was this helpful?

行业应用