galaxy
  • Introduction
  • knowledge
    • JAVA
      • 多态
      • Socket
      • Servlet
      • HashMap
      • TCP
      • DelayQueue
      • Java反射
      • Java Proxy 和 CGLIB 动态代理
      • JVM
        • 类生命周期
        • JVM内存模型
        • 类加载器与双亲委派模型
        • JVM中堆和栈的区别
      • java.time
    • Spring
      • 常用注解
        • @Transactional
      • Spring Data JPA
      • AOP
      • IOC/DI
      • Spring 事务
      • Spring Boot 启动原理解析
      • Spring MVC
        • Spring MVC 2
      • MVC
    • 分布式
      • RPC框架
      • MQ
      • dubbo
        • 环境部署
        • demo
      • 分布式RPC框架性能大比拼
      • 序列化
      • ZK
        • 本地安装zk
        • ZK详解
      • 分布式
        • 分布式锁
      • 限流熔断技术
    • DB
      • Mysql
        • 索引
      • 事务
      • 数据库连接池
        • 工作原理
        • 连接池技术背景
        • 百度百科
        • 主流数据库连接池
      • MongoDB
        • 适用场景
        • MongoDB Java异步驱动快速指南
        • 异步Mongo驱动的性能测试
        • 使用规范
        • 使用场景2
      • Spring Data JPA
      • 数据库设计三大范式
      • 存储过程
      • 视图
      • 乐观锁与悲观锁
      • 分库分表
      • Redis3
        • 其它
        • Redis
        • 场景
        • 分布式及其它
    • Test
      • NGrinder
      • QPS与并发数
    • 并发编程
      • volatitle
      • 锁
      • ThreadLocal
      • AQS
      • CAS
      • RateLimiter
    • 线程池
      • Executors
      • ScheduledThreadPoolExecutor
      • 终止线程池原理
      • demo
  • MST目录
    • 算法&数据结构
      • 算法
      • 数据结构
      • 算法题
      • 经典算法
  • Tool
    • Git
    • Netty5
      • 一些案例
      • Netty源码分析
        • 一、服务器绑定过程分析
        • 二、线程模型分析
        • 三、Channel如何注册OP_ACCEPT, OP_READ, OP_WRITE
        • 四、事件分发模型
        • 五、ByteBuf缓冲区
        • 六、CodeC编解码分析
        • 七、异步执行Future和Promise
      • Netty5.0架构剖析和源码解读
    • idea
  • issue
    • Connection reset
    • 该如何从 Java 8 升级到 Java 10
    • 阿里巴巴为什么不用 ZooKeeper 做服务发现
  • Linux
    • command
Powered by GitBook
On this page
  • 分布式事务
  • 数据库事务
  • 数据库事务的四大特性(ACID):
  • 原子性(Atomic)(Atomicity)
  • 一致性(Consistent)(Consistency)
  • 隔离性(Insulation)(Isolation)
  • 持久性(Duration)(Durability)
  • 总结

Was this helpful?

  1. knowledge
  2. DB

事务

Previous索引Next数据库连接池

Last updated 6 years ago

Was this helpful?

分布式事务

好的博文:

1、

2、阿里GTS:

3、

数据库事务

百度百科:

事务的实现:

(Database Transaction) ,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源。通过将一组相关操作组合为一个要么全部成功要么全部失败的单元,可以简化错误恢复并使应用程序更加可靠。一个逻辑工作单元要成为事务,必须满足所谓的ACID(原子性、一致性、隔离性和持久性)属性。事务是数据库运行中的逻辑工作单位,由DBMS中的事务管理子系统负责事务的处理。

存在的目的:

1、为数据库操作提供了一个从失败中恢复到正常状态的方法,同时提供了数据库即使在异常状态下仍能保持一致性的方法。

2、当多个应用程序在并发访问数据库时,可以在这些应用程序之间提供一个隔离方法,以防止彼此的操作互相干扰。

数据库事务的四大特性(ACID):

原子性(Atomic)(Atomicity)

why:事务其实和一个操作没有什么太大的区别,它是一系列的数据库操作(可以理解为 SQL)的集合,如果事务不具备原子性,那么就没办法保证同一个事务中的所有操作都被执行或者未被执行了,整个数据库系统就既不可用也不可信。

事务原子性实现:

想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,而在 MySQL 中,恢复机制是通过回滚日志(undo log)实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后在对数据库中的对应行进行写入。可以理解为,我们在事务中使用的每一条INSERT都对应了一条DELETE,每一条UPDATE也都对应一条相反的UPDATE语句。

回滚日志:想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,而在 MySQL 中,恢复机制是通过回滚日志(undo log)实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后在对数据库中的对应行进行写入。这个过程其实非常好理解,为了能够在发生错误时撤销之前的全部操作,肯定是需要将之前的操作都记录下来的,这样在发生错误时才可以回滚。

回滚日志除了能够在发生错误或者用户执行ROLLBACK时提供回滚相关的信息,它还能够在整个系统发生崩溃、数据库进程直接被杀死后,当用户再次启动数据库进程时,还能够立刻通过查询回滚日志将之前未完成的事务进行回滚,这也就需要回滚日志必须先于数据持久化到磁盘上,是我们需要先写日志后写数据库的主要原因。

回滚日志并不能将数据库物理地恢复到执行语句或者事务之前的样子;它是逻辑日志,当回滚日志被使用时,它只会按照日志逻辑地将数据库中的修改撤销掉看,可以理解为,我们在事务中使用的每一条INSERT都对应了一条DELETE,每一条UPDATE也都对应一条相反的UPDATE语句。

事务状态:

因为事务具有原子性,所以从远处看的话,事务就是密不可分的一个整体,事务的状态也只有三种:Active、Commited 和 Failed,事务要不就在执行中,要不然就是成功或者失败的状态:但是如果放大来看,我们会发现事务不再是原子的,其中包括了很多中间状态,比如部分提交,事务的状态图也变得越来越复杂。

Active:事务的初始状态,表示事务正在执行;

  • Partially Commited:在最后一条语句执行之后;

  • Failed:发现事务无法正常执行之后;

  • Aborted:事务被回滚并且数据库恢复到了事务进行之前的状态之后;

  • Commited:成功执行整个事务;

并行事务的原子性

级联回滚(Cascading Rollback):Transaction2 依赖于 Transaction1,而 Transaction3 又依赖于 Transaction1,当 Transaction1 由于执行出现问题发生回滚时,为了保证事务的原子性,就会将 Transaction2 和 Transaction3 中的工作全部回滚,这种情况也叫做级联回滚(Cascading Rollback),级联回滚的发生会导致大量的工作需要撤回,是我们难以接受的,不过如果想要达到绝对的原子性,这件事情又是不得不去处理的

一致性(Consistent)(Consistency)

事务在完成时,必须使所有的数据都保持一致状态。在相关数据库中,所有规则都必须应用于事务的修改,以保持所有数据的完整性。事务结束时,所有的内部数据结构(如 B 树索引或双向链表)都必须是正确的。某些维护一致性的责任由应用程序开发人员承担,他们必须确保应用程序已强制所有已知的完整性约束。例如,当开发用于转帐的应用程序时,应避免在转帐过程中任意移动小数点。

数据库领域其实包含两个一致性,一个是 ACID 中的一致性、另一个是 CAP 定义中的一致性。

1、数据库对于 ACID 中的一致性的定义是这样的:如果一个事务原子地在一个一致地数据库中独立运行,那么在它执行之后,数据库的状态一定是一致的。对于这个概念,它的第一层意思就是对于数据完整性的约束,包括主键约束、引用约束以及一些约束检查等等,在事务的执行的前后以及过程中不会违背对数据完整性的约束,所有对数据库写入的操作都应该是合法的,并不能产生不合法的数据状态。我们可以将事务理解成一个函数,它接受一个外界的 SQL 输入和一个一致的数据库,它一定会返回一个一致的数据库。而第二层意思其实是指逻辑上的对于开发者的要求,我们要在代码中写出正确的事务逻辑,比如银行转账,事务中的逻辑不可能只扣钱或者只加钱,这是应用层面上对于数据库一致性的要求。数据库 ACID 中的一致性对事务的要求不止包含对数据完整性以及合法性的检查,还包含应用层面逻辑的正确。

2、CAP 定理中的数据一致性,其实是说分布式系统中的各个节点中对于同一数据的拷贝有着相同的值;而 ACID 中的一致性是指数据库的规则,如果 schema 中规定了一个值必须是唯一的,那么一致的系统必须确保在所有的操作中,该值都是唯一的,由此来看 CAP 和 ACID 对于一致性的定义有着根本性的区别。

隔离性(Insulation)(Isolation)

由并发事务所作的修改必须与任何其它并发事务所作的修改隔离。事务查看数据时数据所处的状态,要么是另一并发事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看中间状态的数据。这称为隔离性,因为它能够重新装载起始数据,并且重播一系列事务,以使数据结束时的状态与原始事务执行的状态相同。当事务可序列化时将获得最高的隔离级别。在此级别上,从一组可并行执行的事务获得的结果与通过连续运行每个事务所获得的结果相同。由于高度隔离会限制可并行执行的事务数,所以一些应用程序降低隔离级别以换取更大的吞吐量。

Why:如果没有数据库的事务之间没有隔离性,就会发生级联回滚等问题,造成性能上的巨大损失。如果所有的事务的执行顺序都是线性的,那么对于事务的管理容易得多,但是允许事务的并行执行却能能够提升吞吐量和资源利用率,并且可以减少每个事务的等待时间。

当多个事务同时并发执行时,事务的隔离性可能就会被违反,虽然单个事务的执行可能没有任何错误,但是从总体来看就会造成数据库的一致性出现问题,而串行虽然能够允许开发者忽略并行造成的影响,能够很好地维护数据库的一致性,但是却会影响事务执行的性能。

隔离性-隔离级别:

以上的所有的事务隔离级别都不允许脏写入(Dirty Write),也就是当前事务更新了另一个事务已经更新但是还未提交的数据,大部分的数据库中都使用了 READ COMMITED 作为默认的事务隔离级别,但是 MySQL 使用了 REPEATABLE READ 作为默认配置;从 RAED UNCOMMITED 到 SERIALIZABLE,随着事务隔离级别变得越来越严格,数据库对于并发执行事务的性能也逐渐下降。

隔离级别的实现:

数据库对于隔离级别的实现就是使用并发控制机制对在同一时间执行的事务进行控制,限制不同的事务对于同一资源的访问和更新,而最重要也最常见的并发控制机制,在这里我们将简单介绍三种最重要的并发控制器机制的工作原理。

1、锁

锁是一种最为常见的并发控制机制,在一个事务中,我们并不会将整个数据库都加锁,而是只会锁住那些需要访问的数据项, MySQL 和常见数据库中的锁都分为两种,共享锁(Shared)和互斥锁(Exclusive),前者也叫读锁,后者叫写锁。

读锁保证了读操作可以并发执行,相互不会影响,而写锁保证了在更新数据库数据时不会有其他的事务访问或者更改同一条记录造成不可预知的问题。

2、时间戳

除了锁,另一种实现事务的隔离性的方式就是通过时间戳,使用这种方式实现事务的数据库,例如 PostgreSQL 会为每一条记录保留两个字段;读时间戳中报错了所有访问该记录的事务中的最大时间戳,而记录行的写时间戳中保存了将记录改到当前值的事务的时间戳。使用时间戳实现事务的隔离性时,往往都会使用乐观锁,先对数据进行修改,在写回时再去判断当前值,也就是时间戳是否改变过,如果没有改变过,就写入,否则,生成一个新的时间戳并再次更新数据,乐观锁其实并不是真正的锁机制,它只是一种思想

3、多版本和快照隔离

通过维护多个版本的数据,数据库可以允许事务在数据被其他事务更新时对旧版本的数据进行读取,很多数据库都对这一机制进行了实现;因为所有的读操作不再需要等待写锁的释放,所以能够显著地提升读的性能,MySQL 和 PostgreSQL 都对这一机制进行自己的实现,也就是 MVCC,虽然各自实现的方式有所不同,MySQL 就通过文章中提到的回滚日志实现了 MVCC,保证事务并行执行时能够不等待互斥锁的释放直接获取数据。

隔离性与原子性

在这里就需要简单提一下在在原子性一节中遇到的级联回滚等问题了,如果一个事务对数据进行了写入,这时就会获取一个互斥锁,其他的事务就想要获得改行数据的读锁就必须等待写锁的释放,自然就不会发生级联回滚等问题了。不过在大多数的数据库,比如 MySQL 中都使用了 MVCC 等特性,也就是正常的读方法是不需要获取锁的,在想要对读取的数据进行更新时需要使用SELECT ... FOR UPDATE尝试获取对应行的互斥锁,以保证不同事务可以正常工作。

持久性(Duration)(Durability)

事务完成之后,它对于系统的影响是永久性的。该修改即使出现致命的系统故障也将一直保持。

既然是数据库,那么一定对数据的持久存储有着非常强烈的需求,如果数据被写入到数据库中,那么数据一定能够被安全存储在磁盘上;而事务的持久性就体现在,一旦事务被提交,那么数据一定会被写入到数据库中并持久存储起来。当事务已经被提交之后,就无法再次回滚了,唯一能够撤回已经提交的事务的方式就是创建一个相反的事务对原操作进行『补偿』,这也是事务持久性的体现之一。

重做日志:

与原子性一样,事务的持久性也是通过日志来实现的,MySQL 使用重做日志(redo log)实现事务的持久性,重做日志由两部分组成,一是内存中的重做日志缓冲区,因为重做日志缓冲区在内存中,所以它是易失的,另一个就是在磁盘上的重做日志文件,它是持久的。当我们在一个事务中尝试对数据进行修改时,它会先将数据从磁盘读入内存,并更新内存中缓存的数据,然后生成一条重做日志并写入重做日志缓存,当事务真正提交时,MySQL 会将重做日志缓存中的内容刷新到重做日志文件,再将内存中的数据更新到磁盘上,图中的第 4、5 步就是在事务提交时执行的。

在 InnoDB 中,重做日志都是以 512 字节的块的形式进行存储的,同时因为块的大小与磁盘扇区大小相同,所以重做日志的写入可以保证原子性,不会由于机器断电导致重做日志仅写入一半并留下脏数据。

除了所有对数据库的修改会产生重做日志,因为回滚日志也是需要持久存储的,它们也会创建对应的重做日志,在发生错误后,数据库重启时会从重做日志中找出未被更新到数据库磁盘中的日志重新执行以满足事务的持久性。

总结

事务的 ACID 四大基本特性是保证数据库能够运行的基石,但是完全保证数据库的 ACID,尤其是隔离性会对性能有比较大影响,在实际的使用中我们也会根据业务的需求对隔离性进行调整,除了隔离性,数据库的原子性和持久性相信都是比较好理解的特性,前者保证数据库的事务要么全部执行、要么全部不执行,后者保证了对数据库的写入都是持久存储的、非易失的,而一致性不仅是数据库对本身数据的完整性的要求,同时也对开发者提出了要求 - 写出逻辑正确并且合理的事务。

事务必须是原子工作单元;对于其,要么全都执行,要么全都不执行。通常,与某个事务关联的操作具有共同的目标,并且是相互依赖的。如果系统只执行这些操作的一个子集,则可能会破坏事务的总体目标。原子性消除了系统处理操作子集的可能性。

https://www.cnblogs.com/savorboard/p/distributed-system-transaction-consistency.html
https://www.cnblogs.com/jiangyu666/p/8522547.html
https://blog.csdn.net/u010425776/article/details/79516298
https://baike.baidu.com/item/数据库事务
https://draveness.me/mysql-transaction
数据库事务
数据修改